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Summary The basic field equations for viscoelastic soft tissues are employed for
exploring the relationship between time varying mechanical stresses and dynamic
deformations of human fasciae in manual therapy. The predicted stress range for
plastic deformation of plantar fascia, based on the viscoelastic model is close to
experimental data. Fascia lata (in vitro) and plantar fascia (in vitro) are found to
exhibit similar behavior, irrespective of how the fasciae are deformed.

Manual therapists should avoid increasing deformation with time. It is desirable to
produce deformation which should become constant after some time, and be applied
for the duration up to 60 s. The therapists may apply almost the same load to
produce the same plastic deformation for plantar fascia and fascia lata. Greater
loads are needed to produce the same strain with higher rate of deformation. The
data presented in this paper may also be useful for surgeons in planning the
orientation of fascia in knee and hip replacement surgeries.
& 2006 Elsevier Ltd. All rights reserved.

Introduction

Fascia is the dense fibrous connective tissue which
joins muscles, bones and organs and is a continuous
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ABSTRACT 

 

 The basic field equations for viscoelastic soft tissues are employed for exploring the relationship 

between time varying mechanical stresses and dynamic deformations of human fasciae in manual 

therapy. The predicted stress range for plastic deformation of plantar fascia, based on the 

viscoelastic model is close to experimental data.  Fascia lata (in vitro) and plantar fascia (in vitro) 

are found to exhibit similar behavior, irrespective of how the fasciae are deformed.  

 Manual therapists should avoid increasing deformation with time. It is desirable to produce 

deformation which should become constant after some time, and be applied for the duration up to 

60 seconds. The therapists may apply almost the same load to produce the same plastic 

deformation for plantar fascia and fascia lata. Greater loads are needed to produce the same strain 

with higher rate of deformation. The data presented in this paper may also be useful for surgeons 

in planning the orientation of fascia in knee and hip replacement surgeries. 

  

 Keywords: Manual Therapy, Viscoelasticity, Human Fasciae, Plastic Deformation. 

 

 
 
 

Key Points 

 This study explores the tissue deformation forces in human fascia during manual 

therapy. It also puts these forces into a relationship with their effect on viscoelastic 

tissue deformation. 

 Fascia lata and plantar fascia require similar forces for the same amount of 

deformation. 

 Perhaps not surprisingly: less dense fasciae, like the superficial nasal fascia, require 

lesser forces for plastic deformation than denser fasciae like the fascia lata. 

 In order to achieve a viscoelastic deformation during manual intervention, without 

causing tissue damage, it is suggested that there should be no slow increase in the 

applied force. Rather it is recommended that a fairly constant force be maintained, for 

up to 60 s, in order to allow for a plastic stress relaxation response of the tissue. 
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1. INTRODUCTION 

 
 Fascia is the dense fibrous connective tissue which joins muscles, bones and 

organs and is a continuous network throughout the body. It plays an important role in 

transmitting mechanical forces in human posture. Several forms of manual fascial 

therapies have been developed which aim to improve postural alignment and other 

expressions of musculoskeletal dynamics (Rolf 1989), (Varela & Frenk 1987); (Cantu 

& Gordin 1992) and (Ward 1993).  The mechanical properties of ex-vivo rat 

superficial fascia (subcutaneous tissue) under uni-axial tension have recently been 

investigated due to its potential importance in a variety of therapies involving 

mechanical stretch (Iatridis et al 2003). The mechanical properties of in-vitro human 

superficial nasal fascia and nasal periosteum were investigated by (Zeng et al 2003) to 

determine under which layer silicon implants should be inserted for better results of 

aesthetic plastic surgery to correct congenital saddle-nose and flat nose. Similarly the 

mechanical properties of in-vitro and in-vivo properties of plantar fascia and fascia 

lata have also been investigated by(Wright & Rennels 1964) and (Magnusson et al 

2001). These studies are based upon the hypothesis that the fasciae are elastic. 

However, the fasciae exhibit viscoelastic behavior (Yahia et al 1993).  

 The viscoelastic properties of the human lumbodorsal fascia have been studied 

by (Yahia et al 1993) to provide better understanding of the mechanical response of 

the lumbodorsal fascia to dynamic and static traction loadings. (Iatridis et al 2003) 

studied the viscoelastic mechanical properties of ex-vivo rat subcutaneous tissue in 

uniaxial tension with incremental stress relaxation experiments and concluded that the 

response was linear and viscoelastic under uniaxial tension. (Zhang 2005) developed 

a new method for evaluating the viscoelastic properties of biological connective 

tissues such as tendons and ligaments. 
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 The purpose of the present paper is to evaluate the dynamic stresses (and 

therefore the applied loads) resulting from the dynamic deformations in manual 

therapy by using the data provided by (Iatridis et al 2003), (Zeng et al 2003); (Wright 

& Rennels 1964) and (Magnusson et al 2001) for superficial nasal and dense fascia 

lata and plantar fascia. The theoretical analysis of the dynamic stresses originated 

from such a scientific basis will be very helpful to manual therapists who presently 

use their intuition to apply the stresses (loads) to produce a desired deformation in the 

fasciae.  The analysis was performed based on the constitutive equations developed 

by (Fung 1984) with the strain energy functions valid for the viscoelastic bodies of 

soft tissues such as the fasciae employed above. 

 
2. METHODS 

 

2.1. Basic field equations for viscoelastic biological tissue 

2.1.1. Extension 

 We assume the deformation produced by the manual therapy technique of 

extension along the 1x axis (Fig.1) to be given by  
1 1y x ,          (1) 

where  is the stretch ratio; the iy  axes in the deformed state coincide with the ix  axes 

in the un-deformed state. The longitudinal stress 1  thus produced under stretch   

will be determined from the equation for viscoelastic case (see Appendix,. eqn.14): 





 d

d

d
FFtGC VEQ

t

e )]()([)( 211111   
     (2) 

and for purely elastic case from (Green and Zerna, 1968) 

 2 1C 32 2
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 


          (3) 

where 2,1 CC  are elastic constants.  

= 0.915 MPa and 2C  = 83.000 for fascia lata (in vivo).     
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Figure 1. Three dimensional fascial element subjected to longitudinal force in the un-deformed state. 
The axes (x1, x2, x3) in the un-deformed state coincide with the axes (y1, y2 , y3) in the deformed state. 
 

These are evaluated for various fasciae as given below: 
1C = 0.0327 MPa and 2C =8.436 for fascia lata;  

1C  = 0.9313 MPa and 2C  = 61.775 for plantar fascia (in vitro); 1C  = 2.883 MPa and 

2C  = 32.419 for fascia lata (in vitro); 1C  
 

    3. RESULTS 

  3.1.   

The  deformation functions for strain, E employed in our calculations are given 

below: 

E=t, =0.001, i.e., strain increases linearly with time t,     (4) 

E=0.1002[1-e-t]; =0.05, i.e., strain levels off with time t.    (5) 

We evaluate the dynamic stresses for fascia lata (in vivo and in vitro), plantar fascia 

and superficial nasal fascia (in vitro) with Eq.(2) and appropriate materials parameters 

and give the results in Figs 3-6 .  

he stress-time curves of various tissues based on the deformation function 

Eq. (4) are shown in Figure 3. The strain-time curve is presented in the inset.  Curves 

of fascia lata in-vitro and in-vivo are close when t<40 second (i.e.  < 1.04), however, 

the latter is about three times the former at t=100 second.  Generally speaking, the 

curves for both fascia lata in-vitro and plantar fascia in-vitro are roughly similar.  The 

stress of the superficial nasal fascia increases linearly with time (and ), instead 

x1, y1 

 
x3, y3 

x2, y2 

Longitudinal  

 Force 

Longitudinal  

 Force 
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convex as observed in the other curves. Superficial nasal fascia is much softer 

compared to other tissues in this study.  

Figure 4 shows the stress-time curves of various tissues based on the 

deformation function Eq. (5). Despite the strain-time curve (inset) levels off at large t, 

all stress curves exhibit relaxation after a maximum stress is reached.  The relaxation 

decays show the viscous dissipation of the energy stored in the tissues.  The curves of 

fascia lata (in vitro) and (in vivo) are close when t<10 seconds (i.e.  < 1.04), 

however, the latter is about three times of the former at t =100 second.  Generally 

speaking, the curves for both fascia lata (in vitro) and plantar fascia (in vitro) are also 

roughly similar. We also note that plastic deformation (3%-4,13%, Threlkeld 1992) 

occurs between 7-11 seconds, and the relaxation after the maximum stress, occurs at 

about 60 seconds.  

 
Figure 2. Experimental and theoretical stress-stretch ratio curves for superficial nasal fascia. Unit of 
stress are in MPa. 
 

 
Figure 5 shows the prediction of the stress-strain curves of fascia lata (in vitro) 

under various strain rates. For comparison, the stress calculated from the elastic 
model (Eq. (3)) is also presented in the grey curve.  As expected from the standard 
model of viscoelasticity employed in this study, the higher the strain rate is, the closer 
the stress-strain curves to the elastic limit. We note that as the strain levels off along 
with the time, the relaxation mechanism becomes dominant and the decay of the 
stress is observed.      
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Figure 3.  1 (MPa) versus time (s) calculated from the deformation function Eq. (22) for four different 
cases. Solid curve:  fascia lata (in vitro); short dashed curve: fascia lata (in vivo); long dashed curve: 
plantar fascia (in vitro); grey curve: superficial nasal fascia (magnified by 1000 times). The strain-time 
curve is presented in the inset.   

 
 

 

Figure 4. 1 (MPa) versus time (s) calculated from the deformation function Eq. (23) for four different 
cases. Solid curve:  fascia lata (in vitro); short dashed curve: fascia lata (in vivo); long dashed curve: 
plantar fascia (in vitro); grey curve: superficial nasal fascia (magnified by 1000 times). The strain-time 
curve is presented in the inset. 
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Figure 5. Predicted stress-strain curves of fascia lata (in vitro) under various strain rates. (a)  From the 
bottom, the 1- curves represent the deformation functions E=t according to solid: =0.001; short 
dashed: =0.002; long dashed: =0.005; grey: elastic model (Eq.(6)).  (b)   From the bottom, the 1- 
curves represent the deformation functions E=0.1002 [1-e-t] according to solid: =0.05; short dashed: 
=0.1; long dashed: =0.3; grey: elastic model (Eq.(6).   
 

 

 

Figure 6 shows the sensitivity of the relaxation parameters.  It is found that the 

sensitivity to the span of the relaxation spectrum is small.  However, the sensitivity to 

the coefficient C0 is rather significant. The sensitivity is expected to be larger if a 

longer relaxation period is allowed or oscillatory deformations are applied.  As C0 

increases, a larger deviation from the elastic model due to viscoelastic dissipation is 

observed. However, in the range of plastic deformation, our results show no changes 
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due to variation of C0 from 0.2 to 0.3. When C0=0 i.e. no viscoelastic dissipation, the 

stress is solely from the elastic response.  The small difference between the C0=0 

curve and the elastic model (dotted curve) is due to the perturbative expansion 

employed in our derivation.    

 

 
Figure 6.  Predicted stress-strain curves of fascia lata (in vitro) calculated from the relaxation function 
Eq.(21) with various relaxation parameters.  The deformation function Eq.(23) is shown in the inset.  
(a) Solid curve: q2C=98.2; triangle: q2C=110.4;  
circle: q2C=12.2.  (b) Solid curve: C0 =0.25; short dashed curve: C0=0.3; long dashed curve: Co=0.2; 
triangle: C0 =0; dashed curve: elastic model (Eq. (6)). 
 

 

3.1 Comparison of Predicted Stresses and Experimental data  

We now use equation (2) to predict the longitudinal stress for plastic 

deformation (3% - 4.13% strain), the range of deformation where the palpable 

sensation of a tissue release is reported by manual therapists when working on the 

dense plantar and fascia lata. These are given in Table 1. This is done to check if the 

(a

) 

(b

) 
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predicted stress range required to produce elongation plastic deformation (3% - 

4.13%) as micro-failure region for dense fascia according to (Threlkeld 1992) agrees 

with the experimental stresses measured (788N/cm2 - 1997N/cm2). Note that 3% 

elongation occurs at 4 mm displacement when the microfailure begins, and 4.13% is 

interpolated when microfailure ends at 5.5 mm displacement (Threlkeld1992, Fig.5).  

We use the stress values (not the force values) due to a wide variation of the cross 

sectional area of fasciae, since the thickness in the areas of cross section (width 

multiplied by thickness) often varies with the subject’s age (Goh et al 2003). The 

experimental stress values given above have been evaluated by dividing the force 

values (246 N- 623 N) by the estimated area of cross section of 20.312 cm (Goh et al 

2003). The ranges of predicted stress values for plastic deformation for the three 

dense fasciae are given in table 1 for comparison with the known experimental stress 

ranges.  

 

 

Fascia Type 

Stress Range (N/
2cm ) for plastic 

deformation by the viscoelastic model 

Plantar Fascia  
(in vitro) 

 
876.50-1348.89  (predicted) 

Fascia Lata  
(in vitro) 

 
1307.05-1864.67 (predicted) 

Fascia Lata 
(in vivo) 

 
1230.69-1999.61 (predicted) 

 Connective tissue (in vitro) 
Threlkeld (1992) 
 

 
788.00 - 1997.00 (experimental) 

 

Table 1 Predicted longitudinal stress for plastic deformation (3% - 4.13% strain), the range reported by 
manual therapists when working on the dense plantar and fascia lata. 
 

 

We do not include the predicted results for superficial nasal fascia in this table since it 

is not dense fascia.  The differences of the above predicted values from the 

experimental values may have arisen because the mechanical properties of the fascias 

in the current case may be different from those of the vitro sample mentioned by 

(Threlkeld 1992). Moreover the experimental stress range was obtained by assuming 

a linear stress-strain relation (Threlkeld 1992), whereas our predictions are based on 

the actual non-linear stress-strain relation. However, note that the predicted stress 
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range for plastic deformation of plantar fascia (in vitro), based on the viscoelastic 

model is close to experimental finding. 

 

3.2. Predicted Stiffness for the Fasciae 

 

Since the predicted stresses for the viscoelastic model are close to the 

experimental findings, we use the viscoelastic stresses and strains of the viscoelastic 

model to evaluate the predicted stiffness for all the fasciae for the plastic deformation 

region (where palpable sensation for tissue release is felt) from Figures (?). The 

predicted stiffness for plantar fascia (in- vitro), fascia lata (in- vitro), fascia lata (in-

vivo), superficial nasal fascia (in-vitro) are 403.75 MPa, 476.6 MPa, 657.2 MPa, and 

1.1 MPa respectively. Note that there is not much difference of stiffness between 

plantar fascia (in vitro) and fascia lata (in vitro). Therefore, manual therapists may 

apply almost the same load to produce the same plastic deformation for plantar fascia 

and fascia lata. The stiffness of fascia lata (in vivo) is about one and half times that of 

fascia lata (in vitro). The stiffness of superficial nasal fascia is at 1.1MPa, tiny 

compared to the others.  

 

4. CONCLUSION 
 

The behavior of fascia lata (in vitro) and plantar fascia (in vitro) is very 

similar, in general, irrespective of how the fasciae are deformed. However, fascia lata 

(in vivo) is much stiffer (about one and half times that of fascia lata (in vitro)). It is 

also observed that for soft superficial nasal fascia, the stress versus time relation is 

linear unlike the non linear behavior of fascia lata and plantar fascia. The mechanical 

responses of the dense fasciae approaches the elastic behavior with a higher strain 

rate, meaning that greater stresses (and therefore greater loads) are needed to produce 

the same strain with a higher rate of deformation.   

The predicted stress range for plastic deformation of plantar fascia , based on 

the viscoelastic model is close to the experimental finding for connective tissue. If the 

strain increases with time, stress also increases and the tissues can reach a near failure 

level. Therefore, manual therapists should avoid increasing deformation with time. In 

contrast if the strain levels off with increasing time, stress relaxation is observed after 

a maximum stress is reached; this happens at about 60 seconds. Therefore, it is 
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advisable to produce deformation which should become constant after some time (e.g. 

Eq. (5)) and be applied for duration up to about 60 seconds.  This conclusion is 

consistent with the fact that no increase in flexibility of the tissues is observed with 

increasing time (Bandy et al 1997) and agrees with the common practice in manual 

therapy.    

It is difficult to analyze the viscoelastic behavior of fasciae under compression and 

shear at this point because the shear relaxation functions in a three dimensional space 

are not known. However, experimental one-dimensional extension relaxation function 

is known and can be applied. Despite the fact that there are no available mechanical 

properties for anisotropic and non-homogeneous fasciae, this study presents a first 

attempt to predict the stresses (and therefore the applied loads) by assuming the 

fasciae to be isotropic and homogeneous. Since we have extracted the one-

dimensional relaxation function determined experimentally along the dominant 

direction of the fiber orientation, the predicted stresses in this study are accurate, and 

are near the reported stress range in experiments without adjusting the parameters, 
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APPENDIX 

 

In order to determine the dynamic stress responding to the applied dynamic extension for 
viscoelastic fasciae, a quasi-linear constitutive equation (Fung 1984) is employed to address 
the viscoelastic behavior in biological soft tissues. This can be written as:  

ij

e

kl
t

ijklij pdtGt 



 




  

),x()(),x(
)(

,     (1) 

where (e) is the pseudo-elastic stress and a function of strain, which in turn is a function of 
position x and time t; Gijkl is the tensor of relaxation function;  is a dummy variable for the 
integration from the beginning (t = -infinity ?) (Fung,1994, p 200) of the deformation to the 
present time t. p is the pressure originated from the incompressibility constraint and the 
boundary conditions.  In the case of uniaxial extension, there is no external stress applied on 
the perpendicular directions to the extension; p must balance the deformation induced stresses 
along the perpendicular directions. The pseudo-elastic stress can be further expressed as a 
partial derivative of a pseudo-strain energy function: 

),(
)(),x()(

txE

W

kl

oe

kl






 ;        (2) 

Ekl is Green’s strain function.  oW is a nonlinear pseudo-strain potential energy for a pseudo-
elastic body.  Here, the off-diagonal components are assumed symmetric, i.e. Eij=Eji. 
Therefore, there are 6 independent components, designated here as E1=E11, E2=E22, E3=E33, 
E4=E12, E5=E13, and E6=E23. We employ the strain energy function W, for soft tissues 
(Demiray, 1976) given by  
 
 )3(];1[ 121  ICQeCW EL

QEL .       (3) 
 
Here 21 ,CC  are elastic constants to be determined for superficial fascia, plantar fascia, and 
fascia lata.  This is done by using the least square method to minimize the difference 
between the theoretical and experimental longitudinal stresses for these fasciae. For the 
theoretical stress, we use eqn.3 above, and for the experimental stress, we use the data given 
in (Zeng, 2003) for superficial nasal fascia, and for plantar and fascia lata, we use the data 
given in (Wright, et al. 1964; Magnusson, et al. 2001) to determine the best values of 

1 2C  and C . As an illustration, the case of superficial nasal fascia is given  

( Fig.2). The computed values are 1C = 0.0327 MPa and 2C =8.436 for fascia lata;  

1C  = 0.9313 MPa and 2C  = 61.775 for plantar fascia (in vitro); 1C  = 2.883 MPa and 

2C  = 32.419 for fascia lata (in vitro); 1C  = 0.915 MPa and 2C  = 83.000 for fascia lata (in 
vivo).     
Now, to the lowest order of the strains, the exponent ELQ obeys the following quadratic 
expression: 

nmmnEL EEQ  ,         (4) 
where mn is a constant and Em is the mth strain. Substituting Eqs.(2)-(4) into Eq.(1), the 
stress function can be written as:   
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 (5) 
where the abbreviations of the stresses are designated in a similar fashion, i.e.  1=11, 
2=22, 3=33, 4=12, 5=13,and 6=23 and ij is a Kronecker delta function.  Note that 
the pressure is isotropic and appears only in the normal directions.  Eq. (5) is a general 
constitutive equation for linearly viscoelastic bodies.  This equation can be readily applied to 
experiments where stress-strain relations are measured from where the materials parameters 
such as the coefficients C1 and mn can be retrieved.  For a uniaxial extension system, 

ELQ can be derived from QEL= C2 (I1-3) under small stretch ratios.  Such a task is achieved by 
a direct comparison of the coefficients in Taylor’s expansions of QEL around =1.  Assuming 
uniaxial extension is along the spatial coordinate 1, Eq.(4) can be written as:  
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where the Green’s strains ijE  for isotropic incompressible tissues are given below 
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It is assumed that  and  in the derivation due to the argument 
of symmetry. The expansions were carried out to the 4th order and the coefficients in Eq.(12) 
were given as:  
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Substituting Eq. (7) and Eq.(8) into Eq.(6), one can obtain the following expression for the 
stresses: 
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           (13) 
In the above derivations, the uninvolved off-diagonal relaxation functions are assumed to be 
zero; the diagonal relaxation functions are the same due to the assumption of isotropy, i.e. 
G11=G22=G33=G.  Since there is no other external stress except the tensile stress along the 
elongation direction, the stresses along the perpendicular directions, i.e. 2 and 3 in Eq. (12) 
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must be zero. The pressure p is thus determined and substituted back to Eq.(9) to obtain the 
tensile stress 1, i.e., 
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  The final step is to determine the relaxation function  tG . In this connection, a 
one-dimensional standard model was introduced by (Fung 1994) to derive a linear reduced 

relaxation function with a continuous spectrum, given by:  
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       (15) 
The relaxation spectrum S(q) denotes the amplitude of the viscous dissipation subject to the 
frequency 1/q.   For many biological materials that exhibit viscoelastic behavior and low 
sensitivity to strain rates, the designation of the spectrum with constant amplitude over a 
range of frequency is found to fit the experimental results fairly well; the spectrum assumes 
the following form: 
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The parameters C0, q1C and q2C used in Eq. (16) can be determined experimentally by 
examining the stress relaxation of the tissues under constant strain or by experiments of 
dynamic loading. In this study, we adopt the parameters obtained from the study of 
subcutaneous tissues of rats under uniaxial tension (Iatridis et al 2003.).  It was reported that 
C0=0.25, q1C=1.86 second, and q2C=110.4 second. Combining Eq. (9) – Eq.(16), one can 
solve numerically for the viscoelastic stress-time, stress-strain relations for various tissues 
undergoing the deformations according to the design of the experiment. 
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